Number of words: 767
The story begins with colonialism and its chief loot: cotton. In the mid 1850s, as ships from India and Egypt laden with bales of cotton unloaded their goods in English ports, cloth milling boomed into a spectacularly successful business in England, an industry large enough to sustain an entire gamut of subsidiary industries. A vast network of mills sprouted up in the industrial basin of the Midlands, stretching through Glasgow, Lancashire, and Manchester. Textile exports dominated the British economy. Between 1851 and 1857, the export of printed goods from England more than quadrupled—from 6 million to 27 million pieces per year. In 1784, cotton products had represented a mere 6 percent of total British exports. By the 1850s, that proportion had peaked at 50 percent.
The cloth-milling boom set off a boom in cloth dyeing, but the two industries—cloth and color— were oddly out of technological step. Dyeing, unlike milling, was still a preindustrial occupation. Cloth dyes had to be extracted from perishable vegetable sources—rusty carmines from Turkish madder root, or deep blues from the indigo plant—using antiquated processes that required patience, expertise, and constant supervision. Printing on textiles with colored dyes (to produce the everpopular calico prints, for instance) was even more challenging—requiring thickeners, mordants, and solvents in multiple steps—and often took the dyers weeks to complete. The textile industry thus needed professional chemists to dissolve its bleaches and cleansers, to supervise the extraction of dyes, and to find ways to fasten the dyes on cloth. A new discipline called practical chemistry, focused on synthesizing products for textile dyeing, was soon flourishing in polytechnics and institutes all over London.
In 1856, William Perkin, an eighteen-year-old student at one of these institutes, stumbled on what would soon become a Holy Grail of this industry: an inexpensive chemical dye that could be made entirely from scratch. In a makeshift one-room laboratory in his apartment in the East End of London (“half of a small but long-shaped room with a few shelves for bottles and a table”) Perkin was boiling nitric acid and benzene in smuggled glass flasks and precipitated an unexpected reaction. A chemical had formed inside the tubes with the color of pale, crushed violets. In an era obsessed with dye-making, any colored chemical was considered a potential dye—and a quick dip of a piece of cotton into the flask revealed the new chemical could color cotton. Moreover, this new chemical did not bleach or bleed. Perkin called it aniline mauve.
Perkin’s discovery was a godsend for the textile industry. Aniline mauve was cheap and imperishable—vastly easier to produce and store than vegetable dyes. As Perkin soon discovered, its parent compound could act as a molecular building block for other dyes, a chemical skeleton on which a variety of side chains could be hung to produce a vast spectrum of vivid colors. By the mid1860s, a glut of new synthetic dyes, in shades of lilac, blue, magenta, aquamarine, red, and purple flooded the cloth factories of Europe. In 1857, Perkin, barely nineteen years old, was inducted into the Chemical Society of London as a full fellow, one of the youngest in its history to be thus honored.
Aniline mauve was discovered in England, but dye making reached its chemical zenith in Germany. In the late 1850s, Germany, a rapidly industrializing nation, had been itching to compete in the cloth markets of Europe and America. But unlike England, Germany had scarcely any access to natural dyes: by the time it had entered the scramble to capture colonies, the world had already been sliced up into so many parts, with little left to divide. German cloth millers thus threw themselves into the development of artificial dyes, hoping to rejoin an industry that they had once almost given up as a lost cause.
Dye making in England had rapidly become an intricate chemical business. In Germany—goaded by the textile industry, cosseted by national subsidies, and driven by expansive economic growth— synthetic chemistry underwent an even more colossal boom. In 1883, the German output of alizarin, the brilliant red chemical that imitated natural carmine, reached twelve thousand tons, dwarfing the amount being produced by Perkin’s factory in London. German chemists rushed to produce brighter, stronger, cheaper chemicals and muscled their way into textile factories all around Europe. By the mid-1880s, Germany had emerged as the champion of the chemical arms race (which presaged a much uglier military one) to become the “dye basket” of Europe.
Excerpted from pages 80-82 of ‘The Emperor of All Maladies: A biography of Cancer’ by Siddharth Mukherjee